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We consider a finite, thermally isolated, classical system which passes from an equilibrium 
state LS’ by the removal of an internal constraint to another equilibrium state B after an empirical 
relaxation time. In the phase space of the system, cells are introduced according to the set of 
measuring instruments used and their experimental inaccuracies. It is shown that the coarse- 
grained entropy S,,(t) tends to its new equilibrium value in general faster than the expectation 
values of the macroscopic variables &o their new equilibrium values. We then investigate the 
dependence of S&t) on the size of the phase cells. For fixed t, we find a lower bound on L&(t) 
by going to the limit of infinite accuracy of the measuring instruments. In the limit t --f co, this 
lower bound on SC,(t) also converges to the equilibrium entropy of a. These properties strongly 
support the opinion that S,,(t) is a proper microscopic expression for the entropy for equilibrium 
and nonequilibrium. Finally, explicit calculations of f&(t) for the model of a point particle en- 
closed in a one-dimensional box are presented which confirm the general results. 

1. Introduction 

The problem of defining a microscopic expression for the entropy has had a 

history of more than 100 years. It is still a challenging problem, and at the mo- 

ment, there is no expression which is both sufficiently general and commonly 

accepted by the scientific community. This situation is felt to be uncomfortable 

since a proper microscopic expression for the entropy is the key to an accurate 

understanding of the Second Law. 

The first microscopic expression for the entropy is due to L.Boltzmann, but 

his expression is only valid under certain restrictive conditions on the system con- 

sidered, for instance that the density is fairly low. The Boltzmann entropy gen- 

eralizes the concept of the thermostatic entropy into the nonequilibrium domain. 

To get rid of the restrictions on the properties of the system, however, seems to 

be a yet unsolved problem. 
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J. W. Gibbs in his statistical mechanical approach found an expression for the 

entropy perfectly valid for all kinds of systems in equilibrium. But the Gibbs 

entropy failed to show the characteristic feature of the entropy given by the Second 

Law that is roughly speaking its nondecrease for adiabatically isolated systems, 

since the Gibbs entropy is a constant of the motion. Thus, the Gibbs entropy is 

insufficient in the opposite sense to the Boltzmann entropy: valid for all kinds of 

systems indeed, but only for equilibrium situations. 

The historically first attempt to escape this difficulty was to introduce the well- 

known coarse-graining which altered the definition of the Gibbs entropy in such 

a way that its equilibrium properties were kept, but the constancy in time was 

destroyed. The second attempt which shall not be dealt with in this paper was to 

give up the idea of a strictly isolated system and to modify the Liouville equation 

in such a way that the original Gibbs entropy changes in time. 

The discussion about coarse-graining is still in process. In this paper, we shall 

only deal with the question whether coarse-graining may lead to an appropriate 

microscopic expression for the entropy for both equilibrium and nonequilibrium. 

To this aim, we start in section 2 with some preliminaries fixing the physical situa- 

tion for which we define entropy and restating the postulates on a microscopic 

expression for the entropy. In section 3, we discuss the problem of the unique 

choice of a set of phase cells for a given physical situation. Section 4 deals with 

the properties of the coarse-grained entropy. A model calculation confirming the 

general results is given in section 5. The paper closes in section 6 with a discussion 

and summary. 

2. Preliminaries 

We consider a finite thermally isolated classical system which shall be observed 

macroscopically by means of Y quantities A’,“!‘, . . . , A?, where the superscript 

exp stands for experimental. Microscopically, the system is described in a subset 

,’ of its phase space r: L‘ may be an energy surface H(x) = E or an energy shell 

E < H(x) d E + AE, where H(x) is the hamiltonian and x E I: The correspond- 

ing invariant measure in Z is d,u = dollgrad HI where do is the surface element, 

for the energy surface, or d,u = dx, where dx is the Lebesgue measure, for the 

energy shell, respectively. 2 is assumed to be finite, i.e. ,u(E) < co. 

In the equilibrium states of the system, the phenomenological entropy S is 

defined as usually: if S = (A?‘, . . . , AZ”‘) and %’ = (A’,““, . . . , A,‘““) are equi- 

librium states and S(d) has been chosen as some constant, then 
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Experimentally, we know the following properties of S: 

(El) S is a single-valued function. 

(E2) S is additive for independent systems (provided S(d) has been chosen 

properly). ’ 
(E3) The Second Law for thermally isolated systems : if the removal of an internal 

constraint forces the system to pass from equilibrium state d to equilibrium 

state g’, then S(B) 3 S(d)*. 

For the definition of a microscopic expression for S for equilibrium and non- 

equilibrium, we restrict ourselves to the following model situation in which the 

system leaves an equilibrium state d by the removal of an internal constraint and 

reaches thereafter another equilibrium state W. 

t < 0: The system has an internal constraint and is in an equilibrium state d. 

Assumption 1: This state d is described in Z uniquely by an N-particle distribu- 

tion function c,,(x), which is bounded. One may fulfil assumption 1 by postulating 

ergodic properties for the system. Supposing that the internal constraint makes 

only a subset Z’ of Z with ,u(Z’) > 0 accessible to the system, and that the system 

is ergodic in zll, then co(x) is determined uniquely to be identical with the micro- 

canonical distribution function in Z’34) and to be zero otherwise: 

PC&$ = jdp -I, XEC 
( 1 

=o xEZ\AY. (2.2) 

t = 0: The internal constraint is being removed. 

t > 0: The evolution of the system is given by Q (x; t) which is determined by 

e (x; 0) = co(x) and the Liouville equation characterizing the system; since &x) 

is bounded, Q (x; t) is uniformly bounded for all times due to the Liouville theo- 

rem : 

p(x;t) < B for all t. (2.3) 

Assumption 2: Q (x, t) is weakly convergent to the microcanonical distribution 

function in 2 

p,,-&x) : = 
( 1 

j- dp -r (2.4) 
2’ 

i.e. 

lim J e (x; t) f(x) dp = .I” emit(X) S(X) + for all f E Lz (2, p). (2.5) 
t+m 2‘ t 

Eq. (2.5) is fulfilled for example for a system having the ergodic property mixing35). 

* We do not intend to enter the discussion how to formulate the Second Law in its most 
elegant and complete form; the reader is referred to the discussion in the literature, e.g. refs. l-7. 
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The macroscopic description of the approach to equilibrium involves the con- 

cept of the relaxation time z,,,. In our context, we mean by z,,, the time after 

which the slowest relaxing macroscopic variable has reached its new equilibrium 

value within the experimental accuracy. In other words, a macroscopic observer 

states in the case of our model situation that the system is in its new equilibrium 

state @ for times t 3 T,,,. 

Now, how to define a microscopic expression Smic for S, generalizing it to the 

nonequilibrium domain? We have to meet the following postulates: 

(Pl) 

(P?) 
(P3) 

(P4) 

The definition of Snlic is universal in the sense that Smic is defined for all 

kinds of systems in both equilibrium and nonequilibrium states. 

Smic depends essentially on microscopic quantities. 

For the equilibrium states, Smic reproduces all thermodynamic properties 

of s. 

If the system passes from equilibrium state & to equilibrium state 2 in rrel, 

and if Smic (I d 0) = S(d), then Smic(t) = S(.3) within the experimental 

accuracy for t 3 ~~~~~ 

Postulates (PI), (P2) and (P3) are evident. (P4) is the linking postulate between 

the equilibrium and nonequilibrium domain. It states nothing about the behavior 

of S,i,(t) for the time in which the system is macroscopically out of equilibrium. 

This is a consequence of the fact that the entropy is defined experimentally only 

for equilibrium states (e.g. ref. 8). In irreversible thermodynamics, however, a 

positive entropy production is often assumed, to which corresponds a postulate 

dS,i, (t)/dt > 0 or equivalently an H-theorem. Many authors indeed postulate a 

monotonic increase for the entropy (e.g. refs. 9-15, 33). In the thermodynamic 

limit, in particular, 

tion which is not 

refs. 16, 17). 

3. Coarse-graining 

this may be convenient and/or simple, but it is still an assump- 

necessary in order to get agreement with experiments (e.g. 

Coarse-graining has been introduced in the early days of statistical mechanics 

by Gibbsi8) and the Ehrenfest’s19). The basic aim is to modify the Gibbs entropy 

(3.1) 

in such a way that the equilibrium properties of S, are maintained, the constancy 

in time for a nonequilibrium situation, however, is abandoned. Clearly, this sec- 

ond goal can only be achieved by replacing Q (x; t) by another function which 

does not fulfil the Liouville equation. The intuitive idea to construct this function 

stems from the fact that during the time evolution Q (x; t) spreads out in C in 

thinner and thinner filaments without ever becoming uniform. A coarse observa- 
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tion of, Q (x; t), however, leads to a function P (x; t) which may indeed approach 

a uniform distribution in Z, and does not fulfil the Liouville equation. 

Mathematically, this “coarse look” at Q (x; t) is realized by the introduction of 

a finite set of “phase-cells” {III,}, i.e. a set of measurable subsets of Z with the 

properties 

(3.2) 

p (Qi n Qj) = 0 for i# j, (3.3) 

lds2j) > O. (3.4) 

The “coarse-grained N-particle distribution function” P (x; r) is then obtained by 

averaging 0 (x; t) over the cells, i.e. 

p (xi axsRj : = MQ_/)) - ’ ,S Q (X i f> dP = : Pj(t> * (3.5) 
.I 

Before we proceed in defining the entropy functional, we have to discuss the fol- 

lowing problems: which set of phase cells should be chosen for a particular ex- 

perimental situation, and how can this choice be justified physically since up to 

this point, the introduction of phase cells has been an ad-hoc procedure. 

Clearly the coarse structure of Z must have something to do with the coarse, 

that is macroscopic observation of the system. Within the context of the deriva- 

tion of a master equation, van Kampen has introduced phase cells according to 

the measuring instruments used and their experimental accuracieszo*’ ‘). The mea- 

surement of the macroscopic quantities A?‘, i = 1, . . . , r, contains inaccuracies 

h,, i = 1, . . . . r, whose amounts may depend on the actual value ai of A;“. Thus, 

the range of all values accessible to A?’ may be divided into intervals of length di : 

. . ., aim2’, al-“, a$“, ai”, a:‘), . . . di = ai’+l’ - aI”. (3.6) 

The outcome of a measurement of the r physical quantities which are described 

microscopically by phase functions A,(x), . . . , A,(x) therefore yields the informa- 

tion that the phase point x corresponding to the system lies in a certain domain 

{X E 22 1 a?” d Ai < C7i”+l’, j = 1, . . . . j-1,; (3.7) 

the better the accuracy of the measuring instruments is, the smaller will be (3.7). 

The set of these domains obviously fulfils the conditions (3.2)-(3.4). 

This introduction of phase cells, however, is still not unique for two reasons, 

although one would intuitively expect this nonuniqueness not to be relevant: 

(i) The accuracy of a measuring instrument is itself not precisely measurable, for 

it is an estimate based on arguments of probability theory. 
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(ii) If (3.6) is a suitable partition of the range of Ai, so will be bi’l’:= aiVZ’ + e 

with any E E R sufficiently small. We shall come back to this problem in sec- 

tion 4.6. 

The physical justification of the use of the coarse-grained distribution P (x; 1) 

with the cells (3.7) instead of I, (x; t) lies in the fact that all information which is 

accessible for the macroscopic observer about e (x; t) is contained in P (.x-; t). 

Consequently, expectation values have to be defined as 

(ni> (t,:= ,(‘P(x; t)Aj(s)d,~ = c P,(r) J A,(.\-) d/L 
.I “i .‘?! 

(3.8) 

and the entropy functional as 

SC&) : = -k J P (A-; 2) 111 P (x; t) dp = -k c ,uu(fJj) tj( t) 117 Pj(r) , 
- j 

which is called the coarse-grained entropy. 

(3.9) 

4. Properties of the coarse-grained entropy 

4.1. Postulates (Pl) and (P2) are trivially fulfilled. 

4.2. In equilibrium situations, S,, reproduces all thermodynamic properties of S. 

This is due to the identity Q(X) = P(x) for the microcanonical distribution which 

implies that the coarse-grained entropy is identical with the Gibbs entropy So for 

equilibrium. It is well-known that the Gibbs entropy has all thermodynamic prop- 

erties of S (e.g. ref. 2). Thus, postulate (P3) is fulfilled. 

The following subsections shall deal with the question whether postulate (P4) 

is fulfilled. 

4.3. For t + 03, we get the Second Law. 

Puttingf(x) = x(Qj) in (2.5) where x is the characteristic function, we obtain 

lim Pj(t) = lim [p(Qj)]-l [ x(Qj) Q (x; t) dp = Qmic, 
f -4 m t + ‘/. i 

(4.1) 

i.e. P (x; t) converges pointwise to emi=. This implies 

lim S,,(r) = -k lim C ,I&!~) Pj(t) In Pj(t) 
f’ c t + % j 

= -k ,f I),,~~ In 9mic dp = S(W). (4.2) 

The Second Law follows directly from the variational property of the entropy 

functional (3.9): it is maximized by a function which is constant in 2 (in compari- 

son to all,fE Lz (Z, p) with the Same normalization) (e.g. ref. 22). 
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This shows that S,,(t) reaches S(g) for t -+ co but we do not know yet whether 

the approach of S_(t) to its equilibrium value takes place well-timed in the sense 

of postulate (P4). In the literature, estimates on the time within which P (x; t) 
reaches stationary values (or equivalently, &(t) reaches approximately S(g)) 

range from the order of many recurrence times19) to the relaxation time of the 

system”3p24). Clearly, a definite decision whether (P4) is fulfilled involves the com- 

parison of the time after which &(t) for a particular physical situation is approxi- 

mately equal to S(B), and the measured relaxation time z,,i. In the next section, 

we shall compare the time after which SC,(t) has approximately reached S(J)) with 

the predicted relaxation time (z,,i) : this is the time after which the slowest relaxing 

expectation value (Aj> (t) has reached its new equilibrium value within the given 

accuracy. This procedure is only a check on the internal consistency of the theory. 

4.4. S_(t) tends to the new equilibrium value S(g) in general faster than those 

expectation values (Ai) (1) which are not constant in time, to their new equilibrium 

values 

(Ai),g := lim 1 P (x; t) Ai dp = 
f-i’33 t 

o,ic JAi(X)dp. (4.3) 

Because of the convergence of the Pj(t) to o,ic (eq. (4.1)), we may write 

pj(t) = @mic + Ej(r), . (4.4) 

with 

lim .sj(t) = 0 for all j (4.5) 
*+30 

and 

(4.6) is seen by integrating (4.4) over L’. 

Substituting (4.4) into (3.8) and using (4.3), we get 

<Ai) (t> - <Ai)eq = Jf &j(t) JAi(x) dp; 
j *J 

substitution of (4.4) into (3.9) yields 

- k C P(Qj> kmic + Fj(t)l ln L1 + &_i(t)/@rnicl, j 

(4.6) 

(4.7) 

(4.8) 
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where we used (4.6). For t large enough such that 

for all j, (4.9) 

i.e. not too far from the final equilibrium state, we may use the expansion 

lIl(1 + x) = s - x2/2 + x3/3 ‘.‘) -1 <x < 1, (4.10) 

yielding for (4.8) with (4.6) 

‘Cg(‘) - ‘Ccg) = - (k/2@mic) C CT(t) p(Qj) + O(Ej) . (4.11) 
j 

Thus, ((Ai) (t) - (Ai),q) goes to zero linearily in the Ej(t), whereas (S=,(t) - S(B)) 

falls off quadratically in the cj(t) (eqs. (4.7) and (4.11)). 

There is the mathematical possibility, however, that as a function of t, (4.7) 

decays faster than (4.11). This may happen if the terms in the sum (4.7) which 

contain the slowest decaying Ej,(t), . . , Ej,(t) either vanish or cancel each other, 

and the remaining terms decay faster than 

-(k/2Pmic) 1 &f?(t) pCQj) t 

?! = j , 

which is the slowest decaying part of (4.11). But if there is at least one Ai for 

which these cancellations do not occur, we may expect that a modified version 

of (P4) holds where r,,, is replaced by (rIel). The next property of&(t), however, 

raises new problems. 

4.5. &,(t) is lowered for a refinement of the cells (t fixed). 

Let (Qj ljEJ> be a set of phase cells, and let (07 1 M = 1, . . . . m];j~J} be a 

refinement of {Qj], i.e. 

(4.12) 

and 

(4.14) 

With the notation 

F’;(t) : = [,I_@;:‘)] - 1 f Q (x; t) dp , 
D ;m 

(4.15) 
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the following identity holds : 

425 

(4.16) 

since both sides of (4.16) are equal to Joje (x; t) dp. With SC, corresponding to 

the partition {Qj} and SC, to {QT}, we get 

SC, - sCT,, = -k c p(.Qj) Pj In Pj - c ,u(Qj”‘) Pj” In Py 
1 j j, m I 

= -k 
I 
,g ,u(.Q~) [P,” In Pj - P,“’ In Py]) 

> -k C ,u(Q,“) [Pj - Py]) = 0, 
i i.m 

(4.17) 

where we used successively (4.16), then the well-known inequality (e.g. ref. 22) 

xlny-xlnxdy-x (4.18) 

and finally (4.14) and (4.16)‘. Equality in (4.17) holds only for Pj = Py ; m 
= ) . ..) 1 mj; jEJ. 

Inequality (4.17) may be intuitively understood by the fact that P (x, t) (cor- 

responding to {Qy)) is a better approximation to Q (x; t) than P(x; t) and that 

SG = -kje(x;t)lne(x;t)dp 
2’ 

has still its low initial value 

-k IQ (x; 0) In@ (x; 0) dp. 
1 

We prove that P(x; t) is a better approximation to e (x; t) than P(x; t) by cal- 

culating 

1;1:[P(x;~)-e(~;t)l~d~-~[~(~;f)--Ox;~)l~d~ 
J 

= T ,J [(Pj)2 - 2Pjg - (iy)’ + 2P(i”~] d,u 
Jrn 

= c p(szi") [Pj - P,“,, > 0. 
m 

(4.19) 

The property (4.17) has led to the opinion that the time it takes P(x; t) to 

become approximately uniform (or equivalently SJt) to reach approximately 

* A different proof has been given recently by Liboff32). 
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S(g)) depends e.ssential/~~ on the size of the cells25,26). From this, one may get 

the impression that (P4) cannot be fulfilled for the following reason: Experimen- 

tally, the time behavior of the thermodynamic quantities remains almost un- 

affected by an increase of the accuracies of the measuring instruments (unless 

the starting accuracy was extremely low and unless previously irrelevant physical 

effects become relevant due to the increase of the accuracy). This implies that the 

relaxation time is stable against variations of the experimental accuracy for a fixed 

set of measuring instruments from certain accuracies on. If, on the other hand, 

the time it takes S,,(r) to reach approximately S(B) can be made longer and longer 

by an increase of the experimental accuracy, a region where it exceeds T,,! may 

be attained, in conflict with (P4). (This implies, by the way, that the predicted 

relaxation time (T,,,) is longer than the actual relaxation time rrc, according to 

section 4.4.) Therefore, we would like to have the same stability property for 

S,,(t) as for 2,,,. 

4.6. For fixed A,(x), . . , A,(x) and t, and arbitrarily varying inaccuracies, an 

upper and a lower bound on S,,(t) exist; for t --f m’, the lower bound converges 

towards the upper bound. 

The upper bound on &(t) is easily found to be 

S,,(l) G -k j’?,,i, In ?,rc dp for all {Qj} (4.20) 
1 

because of the variational property of the entropy functional discussed in sec- 

tion 4.3. By “for all (Q,)” we mean in this section all sets of phase cells correspond- 

ing to fixed A,(x), . . . . A,.(x) as introduced in section 3, with arbitrary inaccura- 

cies. 

For the lower bound, we use the result of section 4.5 that A&(t) is lowered for 

a refinement of the cells. We thus get the lower bound as 

lim SC,(t) (4.21) 
Jl(CJ,;)-+O 

nllj 

if this limit exists. The limit p(Qj) --f 0 in (4.21) has to be taken by means of 

~7~ --f 0, i = 1, . . , r; this corresponds to exact measurements of the r physical 

quantities A?“. We first consider 

PC30) (x; t) : = lim P (x; t), 
6,-+0 

i=l,...,r 

or, explicitly 

(4.22) 

PC”) (x; f)J,,Q-,I 

(4.23) 
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where 

iiF’):= {XEZI Ai = a,; i = 1, . ..) r>. (4.24) 

The superscript (-r) at Qcer) shall denote that by taking the limits ai + 0 the 

dimensionality of Sz has been diminuished by r ; clearly 

pp--r)) = 0. (4.25) 

For the calculation of (4.23), we use 

ar 
= da, . . . aa, i 

f'(x) dp,fJ16i + o(8) (4.26) 

A,(X)<(l< 
i=1,...,r 

which may be seen either by induction for r or by introducing new variables such 

that 

dp = dA, ... dA, d/J-“. (4.27) 

Using (4.26) forf = Q and f = 1, we obtain for (4.23) 

PCrn) (x; t)IXEQ(-‘) 

ar = (4.28) 
&2, ... &, 

A,(x) <al A,(x) <ni 
i=l,...,r i=l,...,r 

Obviously, Pm) (x; t) is in general an extremely crude approximation to g (x; t) 

since it smears Q (x; t) out on the sets CPr) which are of dimensionality dim Z -r 
where dim Z is of the order 1O23 and r about 10 or 100. We may therefore expect 

that PCna) (x; t) behaves very much like P (x; t). 

Because Q (x; t) is uniformly bounded (eq. (2.3.)) all P (x; t) are uniformly 

bounded which implies 

IP (x, t) In P (x, t)j < 1 + B In B for all {Qj] and all t. (4.29) 

For the calculatioh of (4.21) we may then apply the theorem of Lebesgue yielding 

s,‘,“‘(t> := bfmo &(t) = -k [ PC”) (x; t) ln p(O”) (x; t) dpu, 

I-+ .I 
i=l,...,r 

‘(4.30) 
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with 

for all {Qj} and all t. (4.3 1) 

In order to discuss the long time behavior of this lower bound S’:,“‘(t) we want 

to calculate 

lim a’ 

f+a da, ... da, 
P (x; t) dpu, 

A,(X) <a; 
i= 1. . . ..r 

(4.32) 

which is the numerator of (4.28). If we are allowed to interchange limt_tm with 

d*/&, ... da, in (4.32), we get 

lim PCcu) (x; t) = emit, (4.33) 
*‘CC 

because of the assumed weak convergence of L, (x; t) to the microcanonical distri- 

bution (eq. (2.5)). The interchange of lim,,, with ar/&, ... da, may be forbidden 

in pathological cases, for instance if the thin filaments in which Q (x; t) is stretched 

keep running parallel to one of the hypersurfaces Ai = a,. But since the Ai 

are macroscopic quantities and their number is exceedingly smaller than the di- 

mensionality of 2, we may assume that these filaments intersect with the hyper- 

surfaces randomly enough to permit the interchange. This assumption may be 

also looked upon in the following way. The coarse-graining process, i.e. the inte- 

gration over all coordinates and momenta turns the weak convergence of Q (x; t) 

into pointwise convergence of P (x; t). Leaving out integration over r variables 

shall have the effect that the resulting function Pc30) (x; t) still converges to Qmrc, 

at least almost everywhere. Sufficient for this is the condition that Q (x; t) con- 

verges weakly to ,omi, not only with respect to the original measure ,u, but also 

with respect to the “reduced” measure ,&‘) introduced in (4.27). 

Since inequality (4.29) holds for Pep) (x; t) as well, we get with (4.33) 

lim S,‘,“‘(t) = -k J‘emic In gmic dp. 
t+m z 

(4.34) 

We combine the results (4.20), (4.31) and (4.34) in the following lemma. 

Lemma. For a given F > 0, there exists a time r0 such that for all t 3 to the 

following inequality holds 

for all {Qj} with fixed A,(x), . . . , A,(x). (4.35) 
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The significance of this result is firstly that s,,(t), and thus the time within 

which it reaches its equilibrium value within a certain inaccuracy, gets the more 

insensitive against variations of the cells the smaller the cells are. This is precisely 

the stability condition on a microscopic expression for the entropy discussed at 

the end of the previous section. Secondly, the dependence of Z,(t) on the set of 

cells in general becomes less and less relevant as time goes on. Thus, the remaining 

nonuniqueness of the choice of the cells (section 3) is unimportant at least for suf- 

ficiently large times. We may further conclude that a sufficient condition for the 

fulfilment of postulate (P4) is 

To < T,,I. (4.36) 

In the next section, we shall give an indication about the relation between r,,, 

and to. 

4.7. The times z,~., to, and the time after which some s,,(t) reaches approxi- 

mately S(g) qualitatively depend on the macroscopic variables in the same way. 

The qualitative dependence of tre, on the Ai is obvious; adding new variables 

can never lower t,,, . The same holds for the two other times, since further func- 

tions A,+,(x), . . . , AR(x) induce a subpartition of the original cells. Then, sec- 

tion 4.5 yields the desired result. 

5. A model calculation 

In this section, we want to illustrate the results of the previous section by treat- 

ing explicitely a simple model system. The system consists of one classical point 

particle of mass m enclosed in a one-dimensional box of length L with perfectly 

reflecting walls; inside the box, the particle moves freely. Although this model is 

exceedingly simple, it has served quite well to illustrate several aspects of statistical 

mechanics (e.g. refs. 27, 28 and references cited therein and ref. 16). 

A particle with energy not larger than b2/2m, b > 0, is described in an energy 

shell 2 consisting of all points (q, p) E R2 with q E [0, L] and p E [-b, b]. With 

the invariant measure d,u = dq dp we have 

,u(.Z) = .r”dp ;dq = 2bL. (5.1) 
--b 0 

We incorporate the reflecting walls by reflecting boundary conditions (e.g. ref. 29). 

For t = 0 we impose the initial condition that the particle shall be in a certain 

part of the box on the left hand side: 

e (4, Pi t G O)lta.nW? 
=const forO<q<gL, 

=0 forgL<qdL, 
(5.2) 
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with 0 < g < 1. Using normalization to unity and the reflecting boundary condi- 

tions we obtain 

~(q,p;t<0)=(2bgL)-‘O(b+p)B(b-p) 

x isz 0 (q + gL - 2X) 0 (gL + 2iL - q) (5.3) 

in fulfilment of assumption 1 of section 2. Since the hamiltonian consists only of 

the kinetic part, the solution of the Liouville equation is given by (e.g. ref. 30) 

0 (4,p; t> = t? (4 - Ptl% Pi 0). 

Inserting (5.3) into (5.4) yields for t 

‘, (q,p; t) = (2bgL;)-l e (p/b + 

>o 

1) 0 (1 - p/b) 

(5.4) 

x iFz 0 (P/b - (mL/W (q/L - g - 29) 

x 6 ((mL/bt) (q/L + g - 2i) - p/b). (5.5) 

We prefer the representation (5.5) of the solution of the Liouville equation to a 

Fourier series representation as, for instance, in ref. 31 since the latter is difficult 

to handle in numerical calculations. Expression (5.5) consists for finite t only of a 

finite number of nonvanishing terms in the original domain Z and may therefore 

be calculated exactly. 

p (q, p; t) converges weakly toz2) 

?,,(P> = W- “;I, (4, P; 0) dq, (5.6) 
6 

which yields with (5.3) 

o&p) = (2M)-1 8 (b + p) 0 (b - p) = (2bQ-l 6 (b - lpl), (5.7) 

which is the microcanonical distribution in Z; assumption 2 is therefore met. 

For the introduction of phase cells, we assume that we are able to measure the 

position of the particle with a certain inaccuracy h that shall be independent of 

the position of the particle. Following section 3, we have as “macroscopic” 

quantity 

A (4, PJ = 4. (5.8) 

The range of A, i.e. the interval [0, L], is then subdivided into subintervals of 

equal length 8. This yields the corresponding cells 

-'?j={(q,P)E~((j-l)s~qq~js), j = 1, . ..) 2, (5.9) 
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where z is the number of cells; we chose 6 such that L is a multiple of 6, i.e., 

zd=L, ZEN. (5.10) 

For the coarse-grained’distribution function (3.5), we get with (5.5) and (5.10) 

where we introduced dimensionless variables 

x:= q/L, Y:=p/b, and z:= btlmL. (5.12) 

One can easily see that in the sum of integrands in (5.11) only those terms are 

different from zero inside of L’, for which the index i fulfils the inequality 

(-g - 2)/2 < i < (1 + g + 2)/2, (5.13) 

i.e. the sum is actually finite. For t + co, we get with (5.7) 

lim Pj(t> = (2bL)- ‘. 
r-tm 

(5.14) 

With the aid of (5.13), the Pj(t) may be easily evaluated by means of a small com- 

puter. Finally for the coarse-grained entropy, we get according to (3.9) 

G(t) = - (2bL/z) i Pj(t) In pj(t), 
j=l 

where we have put k = 1. The time limit of S,,(t) is according to (4.2) 

lim &Jr) = In (2bL) = In p(Z), 
f-t’x 

(5.15) 

(5.16) 

as expected. 

For the actual computation of S,,(t), we put 

m.=L=b=l; (5.17) 

this is no loss of generality as may be seen from (5.11) and (5.15) since those para- 

meters enter the expression for Pj as a function of z only as factors. Fig. 1 shows 
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S,,(t) for an initial width g = 0.5 and different cell numbers (to z = co we shall 

come back later); the graphs of fig. 1 and of the following figures have been ob- 

tained by interpolation of exactly calculated points of distance dt = A. 

G=O, 5 

Fig. 1 

We have a nonmonotonic approach of s,,(t) to its maximum value; due to the 

geometry of the problem, for r = n, n EN, 5’_,(f) takes its equilibrium value. 

Runs with different values for g look typically the same as the one for g = 0.5. 

The relative minima in fig. 1 are near T = 1.5, 2.5, . . . . Using the geometrical 

properties of the problem, one can derive a formula for S,,(t) for these points by 

evaluating (5.11). The result for g = 0.5 and z = 2 is 

,S,,(t) = In (2~) - [(t + 0.25) In (t + 0.25) 

+ (r - 0.25) In (t - 0.25)]/(22) for z = 0.5, 1.5, . . . , (5.18) 

which yields for large times 

&,(0 NN In 2 - r-‘/32. (5.19) 

For the expectation value of q, we get according to definition (3.8) 

(4) (t> =/dq_k;dpqf’(q>P; f> = 2bj$f’At)cj_(:8qdq 
= (2bLz/z2) 2 PJt) (j - 0.5), 

j=1 

(5.20) 
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G=O, 5 z=2 

TIME 1 

Fig. 2 

Fig. 3 
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with the equilibrium value 

<&I = L/2. (5.21) 

A plot of (q) (t) for g = 0.5 and z = 2 is shown in fig. 2. 

Evaluating (5.20) directly for the same parameters yields for the same t’s as in 

(5.18) (with m = L = b = 1) 

(5.22) 

Now we investigate the dependence of (z,,,) on the number of cells. For the 

model, <tr,,) is the time after which 

l(4) 0) - 0.51 G l/22 for * 2 <%l> (5.23) 

holds, i.e. with the accuracy l/z given, (q) (t) cannot further be distinguished from 

its equilibrium value. A plot of (tre,) US. the number of cells for g = 0.5 is given 

in fig. 3. 

(tr,,) gets almost stable between 5 and 8 cells; with further increase of the 

accuracy, the slowly decaying fluctuations of (q) (t) are detected. The stability 

region is fairly small since the difference of (q) due to the change of the state is 

only about five times larger than the amplitude of the first fluctuation; in a more 

physical situation, however, these two quantities may differ by some orders of 

magnitude. 

Next, we want to check the property of S_,(t) to reach its equilibrium value 

faster than an expectation value, as stated in section 4.4. To this end, we calculate 

(5.24) 

which funcfion must neither approach zero nor infinity for t + co. For the spe- 

cial t values 0.5, 1.5, . . . this is seen by (5.19) and (5.22); plots of Q(t) are given 

in figs. 4 and 5. For z = 2, Q(t) approaches a constant, for z = 4, Q(t) approaches 

a periodic function, respectively; both cases agree with the result of section 4.4. 

The property of S,,(t) to decrease for a refinement of the cells (section 4.5) is 

seen in fig. 1. The calculation of the lower bound (i.e. z = co in fig. 1) follows 

section 4.6: PC=) (q, p; t) is according to (4.28) 

= (2b)-’ J dpe (q,p; t>, 
-h 

(5.25) 



TIME AND CELL DEPENDENCE OF ENTROPY 435 

TIME T TIME ! 

Fig. 4 

? 
G=Oo 5 z=kl 

II: 
Io.or! .50 I.00 1.5” 2.00 2.50 3.m 3,513 9. “0 9.50 5. “0 

TIME T 

Fig. 5 

which is apart from normalization identical with the reduced distribution function. 

S,““(t) is then calculated according to eq. (4.30); the result for g = 0.5 is plotted 

in fig. 1. We note that stability of &(t) against subdivision of the cells is reached 

fairly quickly; S,,(t) for z = 8 or z = 16 differs from ,S,‘,“‘(t) by less than 1.2 or 

0.4 percent for t B 0.5, or less than 0.05 or 0.02 percent for T 2 1, respectively. 

The percentual deviation for very small t is larger since $,“‘(t) is near zero. 
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The interchange of the operations lim,,, and d*/&, ... da, in expression (4.32), 

as discussed in 4.6, is allowed for the model; the reason is that for the free par- 

ticle integration over p instead of p and q suffices to convert the weak conver- 

gence of e (q, p; I) to strong convergencez2). 

Concluding this section, we note that the model confirms the statements of sec- 

tion 4 about the general case. 

6. Discussion and summary 

Clearly our considerations in this paper could not definitely decide whether the 

coarse-grained entropy is an appropriate microscopic expression for the entropy 

for equilibrium and nonequilibrium, the reason being that we did not show that 

the crucial postulate (P4) is fulfilled. Some indications for the validity of (P4), 

however, were given. Firstly, it was seen in 4.4 that a modified version of (P4) is 

in general fulfilled where the empirical relaxation time is replaced by the expecta- 

tion value of the relaxation time. Secondly we have shown in 4.6 that the common 

objection that the time behavior of s,,(r) depends essentially on the choice of the 

cells is not generally valid. For a fixed set of macroscopic quantities by means of 

which the system is observed, the variation of S&t) by changing the size of the 

cells will be the smaller the smaller the cells are. This ensures the existence of an 

upper bound ~~ on the times after which the S,,(t)‘s reach approximately the 

equilibrium value. 

We could not show that x0 is of the order of the relaxation time. But this is 

not unplausible for two reasons: Firstly we have shown in 4.7 that the qualitative 

dependence of 50 and oft,,, on the number of macroscopic quantities is the same. 

Secondly, all the arguments that have been put forward in favour of an approach 

of S,,(r) to its equilibrium value in due time apply to s,‘“‘(t) as well. The reason 

being that both some P(x; t) and P(03) (x; t) are obtained by a coarse-graining 

procedure that approximates Q (x; 1) in an extremely crude way. In the model 

discussed in section 5, we have seen that L&(t) for 8 or 16 cells does not differ 

very much from s,‘,“‘(r) (although one has to be careful with generalizations from 

this simple model). 
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