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We present calculations of the coarse-grained entropy Scg(t) for the model of a classical point 
particle enclosed in a two-dimensional box with perfectly reflecting walls. We find in comparison 
with the one-dimensional case that the fluctuations of Scg(t) and of the expectation values of the 
position have decreased, and that Scg(t) does not take its asymptotic value at regular time intervals. 
The times after which Scg(t) and the expectation values have approximately reached their 
equilibrium values, are about equal; recurrence times are rather clearly separated from this time. 
Finally, we give a general estimate on the change of an expectation value due to a refinement of 
the cells. 

1. Introduction 

In  a previous paper 1) (referred to as l), we have discussed properties of  the 
coarse-grained entropy in general, and we have calculated the coarse-grained en- 
t ropy Sc~(t) for a simple model system, namely a classical free particle in a one- 
dimensional box with perfectly reflecting walls ( "PIB-I  model") .  Initially, the 
particle is confined to a certain par t  o f  the box;  this constraint  is released at t = 0. 

The main results of  those model  calculations were : 

a) Sc~(t) approaches its new equilibrium value nonmonotonica l ly ;  
b) Scg(t) depends on the number  of  cells very weakly f rom remarkably few cells on;  
C) Scg(t ) approaches its equilibrium value faster (essentially ~ 1/t 2) than the ex- 

pectation value o f  the position o f  the particle ( q )  (t) (essentially ~ l/ t);  
d) The stability region where the expected relaxation time 1) (%e,) is fairly stable 

against an increase o f  the number  o f  cells, is very small, since the fluctuations 
of  ( q )  (t) a round  the new equilibrium value are large. 

The limitations o f  the PIB-1 model  are evident:  firstly the low number  o f  dimen- 
sions of  phase space r (dim. P = 2), and secondly the highly singular interaction 
with the walls of  the box (perfect reflection). The first defect seems even more 
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serious, since for one particle in one dimension, one cannot expect a clear distinc- 
tion between a recurrence time and an (expected) relaxation time. A separation 
of these two time scales is highly desirable, however, since within which time Scg(t) 
reaches approximately its new equilibrium value, is an important  question. 

In this paper, we shall therefore present calculations of  Sc,(t) for a particle in 
a two-dimensional box with perfectly reflecting walls ("PIB-2 model"). As we 
shall see, some of  the unpleasant properties of  the one-dimensional case will be 
absent in the two-dimensional model. In section 2, we shall solve the Liouville 
equation for the model, and calculate various quantities. We shall present the re- 
sults in section 3; furthermore, estimates on the change of  an expectation value 
due to subpartitions of  the phase cells will be given. The paper  closes in section 4 
with a discussion and summary. 

2. The model 

The system consists of  one classical free point particle of mass m enclosed in a 
two-dimensional rectangular box with perfectly reflecting walls of  length L and 
~L, 0 < o¢ ~< 1. We describe the particle in an energy "shell" X, consisting of all 
points (qj,  q2, P~, Pz) e N4 with 

0 <~ ql <~ L ,  0 <~ qz <~ ~xL, (p2 + p~)/2m <~ E ,  (2.1) 

where E is the maximum energy 'of the particle. With the invariant measure d/z 

= dql dq2 dpl @2 we have 

lu(,- v') = 2 n m E a L  2 . (2.2) 

For  t ~< 0, we shall have an equilibrium state where the particle has arbitrary 
energy between zero and E, and is confined to that part  of  the box with 0 ~< ql 
~< qT ax and 0 ~< q2 ~< q~2 "x, where 0 < qT ~x < L and 0 < q~z ~ < aL. We thus 
get for the distribution function 

m a x  m a x  _ 1 [(27~rnEql qz ) 
Q (ql, q2 ,P l ,P2 ;  t ~< 0) = [ for 0 ~< ql ~< qT "x and 0 ~< q2 ~< q~aX 

[0 elsewhere (2.3) 

which has been normalized to unity. Imposing reflecting boundary conditions for 
t ~> 0 we obtain as initial condition 

(ql, q e , P l , P 2 ;  t = O) 

= c~ ~ O(q~ + q7 ~ -  2i ,L)  O(q~"X + 2 i ~ L -  q~) 

x ~,, 0 (q2 + q,~a, _ 2i2~xL)0 (q~2 ~ + 2i2aZ - q2) (2.4) 
t2e~ 
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with 

C~ = (27zmEq~q2aX)-  i . (2•5) 

Since the hamiltonian consists only of the kinetic part, we get the solution of the 
Liouville equation for t >/ 0 with the initial condition (2.4) by replacing q~ by 
q~ - p~t/m in (2.4)2). This yields 

(q~, q2, Pl ,  P2, t) 

= el ~ O ( q ~ / L - p ~ t / m L  + q ~ a X / L -  2i~) 

x 0 (q~a~/L + 2i~ - q~/L + p~t/rnL) 

x ~ 0 (q2/aL - p 2 t / m ~ x L  + q";~x/o,L - 2i~) 

x 0 (q2a~/o,L + 2iz - q2/e~L + p2t/me~L). (2.6) 

As in PIB-1, • converges weakly 3) to the microcanonical distribution function in 
~, that is 

L ~xL 

9eq = (4~xL2) -1 S dq~ S dq29 (q l ,  q 2 , P l , P 2 ;  0) = [/,(Z')] -~ . (2.7) 
0 0 

The two assumptions about o in paper I, section 2, are therefore fulfilled for the 
model• 

As in I, we take as a macroscopic quantity the position of the particle, thus we 
have 

A 1 (q l ,  q2, pa ,  P2) = q~ and A2 (q~, qz, P~, P z )  = qz. (2.8) 

The corresponding accuracies will be L / j 1  ax for A 1 and e~L/j2 ax for A2, respec- 
tively. This yields the cells 4) 

• --~ ,max 
ff~J,J2 = { ( q l ,  q 2 ,  P l ,  P 2 )  G S [ ( J 1  - -  1 )  L/ j?  "x <~ q, .~ . .]IL/ .]I  

and (Jz - 1)~L/j~ a" <~ q2 <~ i2o, L/j2'~}, 

1 ~<jl ~<Jr "x , 1 ~<j2 ~<J~n"x- (2.9) 

Obviously, we have cells of equal volume 

w(ns,:~) = ~'(~)/(J~a~s~ax)" (2. lO) 
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F o r  the ca lcula t ion  o f  the coarse-gra ined  d is t r ibu t ion  funct ion,  we in t roduce  the 

fol lowing dimensionless  quant i t ies  

m a x .  m a x  
X l  := q l /L ,  x l  = ql /L,  

x2 : =  q2/(aL),  

Yl : =  p l t / (mL) ,  

Y2 : =  p2t/(mc~L). 

This yields 

dtt = o¢2L4m2/t2 dxl  dx2 dy l  dy2.  

With  the abbrev ia t ions  

c2(t) : =  ~x2L4m2cl/t 2 

and  

Rt : =  t (2E/m)~/L 

X 2  . . . .  . = q ~ a X / ( o c L )  ' 

we get for  the coarse-gra ined  d is t r ibu t ion  funct ion 

f J j l j  2 

i 1 ~  i 2 E ~  

Rt  

dxl  ~ dylO (x~ - 3 ' 1  
- - R  t 

+ x~ a* -- 2i , )  0 ( X 1  a x  -J- 2i~ -- X~ + y , )  
J l /  1 max 

I 
( J l  -- 1 ) / J l  max 

j 2 / J 2  max ( R t  2 -- y12)1 /2 /C~ 

I I 
( J2  -- 1 ) / J 2  max _ (R t2  _ yj. 2 ) 112/0 ¢ 

dy20 (xz - ):2 + x max -- 2i2) X 

× 0 (x~ a~ + 2iz - x2 + Y2). 

(2.11a) 

(2.11b) 

(2.11c) 

(2.11d) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

The second double  in tegral  in (2.15) is a funct ion o f y t  alone,  as far as the inte- 

g ra t ion  var iables  are  concerned.  We thus define 

j 2 / J 2  max (Rt2  - - y 1 2 ) 1 / 2 / ~  

f (y , )  := I I 
( J 2  -- 1 ) / J 2  ma* -- (R t2  -- YI 2)  112/0 ¢ 

dy20 (x2 - Y2 + x~ ax - 2i2) 

x 0 (x~ ax + 2i2 -- x2 + Y2). (2.16) 
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f(Yl)  may be calculated exactly, since it is just the area of the intersection of the 
rectangle defined by the integration boundaries with the strip defined by the 
0-functions in the xz-y2 plane. The remaining two integrations in (2.15) then 
integratef(y~) over an area of the same structure as that in (2.16) in the x~-y~ 
plane. S incefdoes  not depend on x~ we may write for (2.15) 

p j l j 2 ( g  ) = [ / fA(~t~ j l J2) ] - i  C2( t  ) 

R t 

V ~ h(y , ) f (y~)  dye, (2.17) 
i l e2~  iZa~ --R t 

where h(y~) measures the extension of the integration domain in x,-direction and 
may be calculated exactly. We have thus reduced the four-dimensional integra- 
tion in (2.15) to a one-dimensional one which must be done numerically. 

Finally, we note that the sums in (2.15) [and (2.17)] consist only of a finite 
number of terms. One may show that only those terms contribute inside Z for 
which the following inequalities hold: 

--(X1 ax -1- Rt) < 2i~ < (1 + x7 ~ + Rt) (2.1.8) 

and 

- ( x ~  ~ + Rt/~) < 2i2 < (1 + x m"~ + R,/c~). (2.19) 

Having calculated the Pj,i~(t) we get for the coarse-grained entropy 

j l  max j2 max 

st.(t) = - k  ~ ~ ~(-%lJ~) ~'~1~(t) In Pj~j~(,) 
Jl = 1 Jz = 1 

(2.20) 

according to formula (I.3.9). Following the definition of the expectation value 
(1.3.8) we calculate 

qi d #  = 2=mE~xL 3 ( j i  - O.5)/((jr~ax)2 j ~  ax) 
OJlJ 2 

(2.21) 

and 

I q2 d~ = 2r~mE~x2L a (J2 - 0 .5 ) / ( j~  a~ (j2ax) 2) 
"Qjlj2 

(2.22) 

to be inserted into the formula 

j l  max j2 max 

(q , ) ( t )  = ~ Z PJ~J2(t) S q ,d#,  i =  1,2.  (2.23) 
J l = l  J 2 = 1  ff2jlj2 
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Now we calculate P(~) (q~, q2; t) according to (I.4.28). With the substitutions 
(2.11) we obtain 

P(~) (ql, q 2  ; t) = t °t~l'f 2 ]U, 2~max~max~,2-1--1.L, -~1 -a~2 ~ )' Z E 
i16.~ e i2~2~ e 

R t 

dy lO(y l  -- x j  
- - R  t 

"}- X1 ax "]- 2 i l )  0 (X~ + X l  a x  - -  2i ,  - Yl)  

(Rt2 -- y12) 1/2/,x 

I 
- - (R t2- -y I2) l12 /O~ 

dy20 (Yz - x2 + x 2  "x + 2iz) 0 (x2 + x~ "x - 2i2 - Y2), 

where the y2-integration can be done exactly; in the sum, only those terms contri- 
bute, for which (2.18) and (2.19) hold. Inserting the result into (I.4.30) yields 

toc) S¢g (t); the two integrations have to be done numerically. 

3. Results  

For the actual computation we put 

L = 1, E =  1, m = 2; (3.1) 

this normalizes the time scale so that it takes the particle with maximum momen-  
tum (2mE) ~- the unit time to pass the distance L. The accuracy in the numerical 
integration of (2.17) has been such that the deviation of the norm of P from 1 has 
been less than 0.7 permille. A typical result for S~g(t) and ( ~  S~g (t) (with the para- 
meters ~ = ~, x~'ax = ~-,1 xzma~ = ½) is given in fig. 1", the curves are results of  inter- 
polation of  calculated points of  distance A t  = ! 16" 

As in the one-dimensional case the approach to the asymptotic value is non- 
monotonic, but due to the more complicated geometry of the energy shell, S¢g(t) 

does not take its asymptotic value in the time interval [0, 3]. The relative height 
of  the first (oo~ fluctuation of  S¢g (t) (relative to the change of S ~ ) ( t )  due to the change 
of state) is here about 1/170, whereas in PIB-1 it has been about 1/35, thus the 
fluctuation amplitude has decreased. The same effect is seen in the plots of  ( q l )  (t) 
and (qa ) ( t )  in fig. 2 for the same choice of  parameters as in fig. 1. 

The relative height of  the first fluctuation has decreased from about 1/5.8 in 
PIB-1 to 1/9.5 in PIB-2. As seen in fig. 3, this leads to a larger region of  stability 
of  the expected relaxation time [see (I.5.23)], since it takes higher accuracy than 
in the one-dimensional case to detect the fluctuations. 

We note here one further general property of  the coarse-graining process that 
has not been included in I which concerns the following requirement. Suppose 
we change the accuracy of the measurement of  a macroscopic quantity. This 
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Fig. 1. The coarse-grainedentropy for JT ax ---- j 2 " m a x  = -'~ a n d j T  ax = j2"max = oc (below); the other 
m a x  m a x  . m a x  . m a x  parameters  are  ~ =  32-, x~ = x 2 = ½. In  b),  the  plot  for  Jx = J2 = 2 has  been  omi t ted  ; 

it would be just slightly above  the given one for infinitely many cells. 

t ~  

f - -  

X 
LLI 

oSO 1,00 1.50 2,00 2.50 3.00 

TIME T 

Fig. 2. The expectation values (ql)(t) and (q2) ( t )  (below) for j~,a, = j~,ax = 2, ~ = ~-, 
x~ax = x  2,.a~ =~.~ The dashed lines represent the asymptotic  values. 
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changes the set of phase cells, and thus the coarse-grained distribution function. 
One may therefore suspect that the time behavior of the expectation value of 
another macroscopic quantity is essentially affected by this change which should 
not be the case. We give now an estimate on the induced change of the expectation 
values. 

Z 

Z 

La_& 
OZZ 

% 

d" 
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2 ~ 6 k 7b 7~ I~ I% 

J 1 MAX 

Fig. 3. Expected relaxation time (rrc,) as a function ofjl""~ with j2 . . . .  x = 2, other parameters as 
before, j~ax = 3 yields the same result, see end of section 3. 

Suppose we have a subpartition { ~ . }  of {.qj} (as in section 4.5 of  I), and the 
subpartition shall be induced by an increase of the accuracy for the measurement 

e x p  of an A k . With the original P (x; t) we get 

(A i )  (t) :=  Z Pj(t) S A,(x) d/~ = ~ Pj(t) #(#2j) A~ j), (3.2) 
J F2j j 

where Af j> is the mean value of A~(x) in Oj with 

ai(VJ) ~< A~j> ~< at%+~) (3.3) 

according to the definition of the cells (1.3.7). For the refined set of phase cells we 
get 

(A; )  (t) :=  ~ P~(t) S A,(x) d# = ~, P~'(t) tt(Os' ) A~ j"> . (3.4) 
j ,  m .Q 3 ra J ,  nl  

Now since the -Qj" are subsets of  g2j we have again 

( v j )  .~( , jm> (vj+ 1) ai ~< --~ ~< ai (3.5) 
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Putting 

= ,d ( j )  A(J  m) (3.6) 

we get from (3.3) and (3.5) 

[r~'[ ~< max (a(i ~J+l) - a~ ~)) = :z l,. (3.7) 
v j  

This implies 

_--_ p,n t K A , ) ( t ) -  (A , ) ( t ) l  [7~[s Z ~()#('Q;)r]~m ~<rh' (3.8) 

where we have used (3.6), (I.4.16), the normalization of the P]/(t) to unity, and 
finally (3.7). We have thus the result that the maximum change of an expectation 
value due to a subpartition of the original cells (introduced by higher accuracy 
for the same or another macroscopic quantity), is less than its maximum inaccu- 
racy. Noticing that both estimates (3.7) and (3.8) are fairly rough we may expect 
an even smaller change. 

For the PIB-2 model we may even show that a change o f j ~  ~ leaves (q~) (t) 
invariant (and vice versa) which is a consequence of the particularly simple "ma- 
croscopic" variables. Defining the coarse-grained distribution function 

P (ql ,  qz; t)l(ql,o2)~.o.sls~ :=  Ps,s~(t) (3.9) 

which implies a correspondence of the q~ to the j~, we have 

L (xL 

(q l )  = ~ d # P ( q , , q 2 ; t )  ql = 2~mE~dq ,q l  j dqzP(q~ ,qz ; t ) .  (3.10/ 
22 0 0 

Now we show that the function S~L dq2P (ql, q2, t) does not depend on the parti- 
cular choice o f j~  "x. Calculating 

c~L j 2  max 

S P (q~, q2 ; t) dq2 = ~, Ps~s2(t) c~L/j~ ax 
0 j z =  I 

j 2  raaz 

= jTax/(2~zmEL) ~ Ps,s2(t) t~((2j~s2) (3.11/ 
J2= 1 

according to (3.9) and (2.10), we see from (I.4.16) that the last sum in (3.11) is 
independent of the cell structure in q2 direction. 



TIME AND CELL DEPENDENCE OF COARSE-GRAINED ENTROPY 593 

4. Discussion and summary 

It is instructive to summarize now the main results and differences of PIB-1 
and PIB-2. 

a) Both models show a very weak dependence of Scg(t) on the number of  cells, 
especially after a time of the order of  the expected relaxation time has elapsed. 

b) In PIB-1, Scg(t) takes its asymptotic value at regular time intervals. This is 
not the case in PIB-2 (at least not in the time interval considered). Here PIB-1 
should be the exception to that general behavior. 

c) The fluctuations both of Sc~(t) and of the expectation values around their 
asymptotic values have decreased in PIB-2 in comparison to PIB-1. This leads to 
a larger (approximate) plateau in a plot of  (~rel) VS. the accuracy of the measure- 
ment. We expect this trend continues for higher dimensionality of X. 

d) Another difference between PIB-1 and PIB-2 concerns the separation of 
time scales. For accuracies that do not detect the fluctuations, the expected relaxa- 
tion time is about unity in both models; Scg(t) has reached its equilibrium value 
after this time with even better relative accuracy than the expectation values. For  
a qualitative investigation of the recurrence times take a particle with maximum 
energy E. In PIB-1, the particle will have reached again its precise initial condition 
after a time = 2. For  the particle with maximum energy E in  PIB-2, however, recur- 
rence times vary from 2o~ (e.g. o~ = 2) to infinity, depending mainly on the angle 
between Pl and P2, and the accuracy within which the particle shall reach its ini- 
tial condition again. We may therefore expect that an average recurrence time 
(however the averaging is done) is better separated from the expected relaxation 
time, than in PIB-1. It is now important to note that in both models the time after 
which Scg(t) has approximately reached its equilibrium value, is by far closer to 
(v, el) than to an (average) recurrence time; because of  the better separation of 
these times in PIB-2, the present results have more weight. Therefore, in the old 
controversy about the time after which Scg(t) has reached approximately station- 
ary valuesS'6.7), the assertion is supported that this time is much shorter than 
the recurrence time. 

We may conclude that the results presented in this paper give further support 
to the opinion that the coarse-grained entropy is a proper microscopic expression 
for the entropy for both equilibrium and nonequilibrium. 
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